
ent 104 (2006) 62–73
www.elsevier.com/locate/rse
Remote Sensing of Environm
Mapping shrub abundance in desert grasslands using geometric-optical
modeling and multi-angle remote sensing with CHRIS/Proba

Mark Chopping a,⁎, Lihong Su a, Andrea Laliberte b, Albert Rango b,
Debra P.C. Peters b, Naushad Kollikkathara a

a Earth and Environmental Studies, Montclair State University, Montclair, NJ 07043, USA
b USDA, ARS Jornada Experimental Range, Box 30003, MSC3JRN, NMSU, Las Cruces, NM 88003, USA

Received 29 January 2006; received in revised form 24 April 2006; accepted 29 April 2006
Abstract

This work examines the application of a geometric-optical canopy reflectance model to provide measures of woody shrub abundance in desert
grasslands at the landscape scale. The approach is through inversion of the non-linear simple geometric model (SGM) against 631 nm multi-angle
reflectance data from the Compact High Resolution Imaging Spectrometer (CHRIS) flown on the European Space Agency's Project for On-Board
Autonomy (Proba) satellite. Separation of background and upper canopy contributions was effected by a linear scaling of the parameters of the
Walthall bidirectional reflectance distribution function model with the weights of a kernel-driven model. The relationship was calibrated against a
small number of sample locations with highly contrasting background/upper canopy configurations, before application over an area of about 25 km2.
The results show that with some assumptions, the multi-angle remote sensing signal from CHRIS/Proba can be explained in terms of a combined
soil–understory background response and woody shrub cover and exploited to map this important structural attribute of desert grasslands.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Arid and semi-arid lands, including desert, scrubland,
grassland and savanna, cover about 40%, or an estimated
58.5 million km2, of the terrestrial surface (Atjay et al., 1979).
Vast areas within these biomes, including a large proportion of
the southwestern USA, have experienced a dramatic increase in
the abundance of woody shrub vegetation over the last century,
replacing a former relatively continuous cover of grasses. This
has resulted in changes to hydrological and biogeochemical
cycles as well as profound impacts on the ecology and economic
value of the land at local to regional scales (contraction of the
livestock industry) and on the surface radiation budget at
regional to global scales (the albedo of shrub-dominated land is
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much higher as bright soils are more exposed). Scientists are thus
interested in methods for assessing the condition of the land for
the purposes of furthering management and conservation goals,
for predicting ecosystem response to future disturbance regimes,
and for measuring fluxes of energy and materials at the lower
boundary. Of particular interest to ecologists is the mapping of
upper canopy (large shrub) horizontal distributions and gap
fraction which is related to fetch lengths and is important in
dynamic “gap” models of landscape-scale processes, such as
seed dispersal, the potential for the spread of fire, and feedbacks
between vegetation, hydrologic and soil processes. Gap models
are extremely useful in predicting plant- and species-level
responses and interactions under a variety of environmental
conditions but are limited in the spatial extent that can be
simulated as a result of the small plot size on which they operate
and the detailed processes included (Peters & Herrick, 2001).
They require at minimum information on dominant plant type:
the ability to map shrub abundance, number density and size
distributions is therefore critical if these models are to be
implemented over large areas.
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Since the large extent, limited accessibility and surface
heterogeneity of deserts prohibits the use of ground survey in
monitoring, remote sensing is the only means of obtaining
geographically comprehensive measurements. Remote sensing
from Earth observation satellites is a powerful tool that has been
used to examine trends in dryland degradation since the 1980s,
with varying degrees of success. Remote sensing of vegetation
in drylands presents a number of specific challenges, not least
because of the very low levels of vegetation cover and highly
discontinuous canopies. The most widely used method for
assessing vegetation abundance, photosynthetic activity and
biomass – spectral vegetation indices calculated as ratios of red/
near-infrared (NIR) reflectance – are not as useful in arid
environments as elsewhere since they are based on the observed
absorption of red light by leaf pigments and the assumption of a
relatively NIR-dark soil. However, dryland mineral soils are
bright in the NIR, rendering such indices ineffective (Calvão &
Palmeirim, 2004; Ni & Li, 2000; Rahman & Gamon, 2004; Ray,
1995), even though some of these indices attempt to
compensate for changes in soil color, e.g. the Soil-Adjusted
Vegetation Index (SAVI; Huete, 1988) and the Modified SAVI
(Qi et al., 1994). If the surface is conceptually divided into
upper canopy and lower canopy+soil, then soil spectral
response is not the most important control on brightness and
variations in understory cover have a more profound impact.
Similar constraints limit the utility of multispectral imaging in
most regions of the solar spectrum: the reflectance response is
highly correlated across most of this wavelength region.

Recent developments in remote sensing technology such as
imaging spectroscopy and very high resolution imaging, which
are proving very useful in other environments, also have
limitations when used in arid regions. It has been shown from
first principles that the ability of imaging spectroscopy to provide
a spectral vegetation signal is limited when fractional cover is
below 0.3 (Okin et al., 2001), although some success has been
reported in unmixing of spectra to estimate the fractional covers of
soil, photosynthetic and non-photosynthetic vegetation (Asner et
al., 2003). Very high resolution imaging by the latest generation of
commercial imagers with meter or sub-meter ground sampling
distances (IKONOS, QuickBird) could provide much of the
required canopy information over large areas — but the cost of
data for a mapping effort for a single year would be high and data
volumes would be huge and relatively unmanageable even with
today's fast, capacious computers. Scientists – ecologists,
hydrologists, biogeographers and meteorologists – do not
generally possess the financial or computing resources to tackle
such projects and most fall back on the tried and trusted but
ultimately limited approach of using a spectral vegetation index as
the major source of information. More importantly, process
models must be driven with parameters obtained at regular
intervals, typically from daily to monthly frequencies.

An alternative approach is to use multi-angle moderate field-
of-view data with techniques designed to exploit the directional
signal by either empirical metrics (e.g., ratios of image values
acquired at differing viewing orientations) or by modeling the
changing reflectance with respect to illumination and viewing
angle; i.e., modeling the bidirectional reflectance distribution
function (BRDF). In arid environments with very low leaf area
per unit area, the main physical phenomenon underlying
observed changes is shadowing of the background by plants.
Models which explain changes in the spectral reflectance of a
partly vegetated surface with respect to illumination and viewing
angles and the physical structure and optical properties of
canopy elements have been developed. These models attempt to
describe and may partly explain the surface BRDF. Geometric-
optical (GO) models are one class of such models and these treat
the surface as an assemblage of discrete, identical, and relatively
large geometric objects placed in a Poisson distribution above an
underlying surface (Chen et al., 2000; Li & Strahler, 1992)
which is frequently considered Lambertian but may also be
characterized by its own BRDF (Ni & Li, 2000). The remotely
sensed observation is modeled as a linear combination of
contributions from viewed sunlit and shaded components, with
each contribution a product of component reflectance and the
fraction of the sensor's field of view occupied by the component.

GO models have been used successfully to estimate forest
canopy metrics (Gemmell, 2000; Pilger et al., 2002; Scarth &
Phinn, 2000) and appear to have great potential (Chen et al.,
2000). The Li–Strahler geometric-optical (GO) model (Li &
Strahler, 1992) is one of the best known of this type of model and
been found to perform well in forest environments (Schaaf et al.,
1995). Similar models have also been used in theoretical and
validation studies in desert grasslands and shrublands (Chopping
et al., 2003, 2004a,b; Ni & Li, 2000; Qin & Gerstl, 2000). In
spite of their successful application in forests, GO models have
not been used to estimate shrub canopy parameters in drylands at
landscape scales. This may be because in forest environments
the background makes a small contribution to the signal relative
to tree crowns and is often composed of a fairly homogeneous
understory of relatively high cover with spectral reflectance
characteristics similar to leaves of trees and on dark organic
soils. Several workers have noted that even in forest environ-
ments the understory can present problems for GO modeling
(Bowyer et al., 2001; Gemmell, 2000). In arid environments the
background of mineral soils, litter and mixed understory plant
cover of grasses, sub-shrubs and annuals is much more
important in governing brightness than in forests. Background
(soil plus understory) fractional cover usually exceeds 0.7 and
the high brightness relative to leaves, stalks and branches of
large plants reduces the vegetation-specific information content
of the signal.

More importantly forGOmodeling, all types of backgrounds–
even bare soils– exhibit quite strong reflectance anisotropywhich
must be accounted for separately from the larger scale geometric
effects of large plants (shrubs). This was recognized in Ni and Li
(2000), where a background BRDF was injected into the canopy
reflectance model. Using a static background BRDF would work
well in situations where the background composition does not
vary importantly from place to place. Herein lies the first major
difficulty in applyingGOmodels tomeasuring canopy parameters
in arid shrublands: in these environments the soil–understory
background composition and anisotropy vary substantially from
location to location on scales of a few tens of meters. In order to
separate the effects of the upper canopy (shrubs) and the
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background an alternative to adopting a static background BRDF
must be employed.

A second major problem is that GOmodels are formulated so
that plant number density and cover appear as a single internal
parameter. The same proportions of viewed and illuminated and
shaded crown and background are obtained for either a small
number of large plants or a large number of small plants,
keeping total plant cover constant. This means that even if we
were able to successfully decompose the remotely sensed signal
into upper canopy and background contributions, we would still
only be able to obtain a measure of upper canopy cover. For
many applications this information may be sufficient; however
we would like to know more about the canopy. This problem
has been noted by workers and the need to provide additional a
priori information has been recognized (Combal et al., 2002; Li
et al., 2002; Weiss et al., 2000).

The major challenge addressed in this work is therefore how
to use a GOmodel to separate the upper canopy and background
contributions. A second problem, how to decompose upper
canopy cover into plant size and number density, is addressed in
a separate study. Neither of these problems is trivial but only if
the first is adequately resolved can GO models be exploited
effectively in arid grasslands.

2. Method

2.1. The study area: the USDA, ARS Jornada Experimental
Range

The USDA, ARS, Jornada Experimental Range lies about
37 km north of Las Cruces, NewMexico (32.5°N, 106.8°W) and
is 1 of the 22 core sites worldwide selected for the exploitation of
data from the CHRIS instrument on Proba, launched on October
22, 2001 (Rango et al., 1998) (Fig. 1). The Jornada Experimental
Fig. 1. (a) The location of the CHRIS scene in relation to the USDA, ARS Jornad
Range is located in the northern part of the Chihuahuan Desert
between the Rio Grande floodplain (elevation 1186 m) on the
west and the crest of the San Andres mountains (2833 m) on the
east. It is located at the southern end of a hydrologically closed
basin and is characterized by a complex system of alluvial fans
(bajadas) and ephemeral playa lakes. Much of the basin is
dominated by coarse-textured aeolian and fluvial sediments
from the RioGrande.Mean elevation is about 1350m. Climate is
arid to semiarid: long-term (1916–1995) mean annual precipita-
tion was 249 mm/year (S.D.=87) and mean monthly tempera-
tures ranged from 3.8 °C in January to 26.1 °C in July. The
Jornada is characterized by a monsoonal pattern in precipitation
withmore than half annual rainfall occurring in July–September.
Vegetation is classified as desert grassland and shrub density has
increased dramatically since the 1880s and is continuing to do so
(Gibbens et al., 1992). Prosopis glandulosa (honey mesquite) is
now a major dominant on sandy soils where Gutierrezia
sarothrae (broom snakeweed) and Yucca elata (soaptree
yucca) are also abundant. Uplands are dominated by the
perennial C4 grass, Bouteloua eriopoda (black grama) occurring
on sandy loams to loamy soils and are often dominated by the C3

shrub, Larrea tridentata (creosotebush). Other grasses, succu-
lents, shrubs, and forbs account for the remainder of plant cover.

2.2. CHRIS multi-angle data

The CHRIS sensor developed by Sira Electro-Optics Ltd.
(UK) produces imagery in up to 62 spectral channels in the range
415–1050 nm with a spectral resolution of 5–12 nm. It is highly
configurable in terms of both spectral channels and spatial
resolution (European Space Agency 1999). Calibrated spectral
radiance images in 18 bands from 442 nm to 1019 nm (CHRIS
Mode 3 — Land Channels) have been obtained over desert
grasslands in the Jornada Experimental Range since the launch of
a Experimental Range. (b) The location of the Range in New Mexico, USA.



Fig. 2. CHRIS/Proba angular sampling over the Jornada Range at three times of
year. The table shows the angular sampling for the images used in this study; B
and F indicate back- and forward-scattering directions, respectively; SZA, SAA,
VZA, VAA, and RAA are solar zenith, solar azimuth, view zenith, view
azimuth, and relative azimuth angles, respectively. Image #22 was not used in
this study as the overlap area was too small.

Fig. 3. Example CHRIS spectra (12/28/03) for a bright target in the Jornada
Experimental Range. The solar zenith angle is 57°. The legend shows the 2-
character scene code, viewing in the (F)orward or (B)ack-scattering hemisphere,
and view zenith angle. Lines are smoothed for clarity only. Note the higher error
in the shorter wavelengths.
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Proba in October 2001, providing up to five angular looks in the
space of a few minutes via tilting and nodding of the satellite.
Mode 3 provides a nominal ground sampling distance of ∼17 m
with a full swath. A CHRIS image set from August 22, 2003 was
selected for this study; this date is towards the end of the wet
growing season with maximum green foliage. The areas imaged
by CHRIS encompass a variety of plant communities and
topoedaphic conditions, including black grama grassland, grass–
shrub transition, mesquite- and creosotebush-dominated shrub-
land, areas infested with broom snakeweed, areas of sand
entrainment and deposition, experimental plots, and swales. The
images were co-located using sets of >30 ground control points
based on features such as road intersections, pits, and swales. A
1m IKONOS panchromatic image was used as the reference. The
images were then resampled to a 25 m grid on a UTM map
projection using low-order polynomial transforms with a nearest-
neighbor rule. The absolute root mean square error (RMSE) at the
control points was at all times <3 m and the match between
transformed and reference images was carefully checked across
the images and not just at control point locations. Image
acquisition times were used with orbital ephemeris and the
Xephem software package to obtain the satellite zenith and
azimuth angles. The angular sampling for typical CHRIS
overpasses is shown in Fig. 2. The August 22 set was acquired
with a 26° solar zenith angle and provides one look close to the
solar principal plane and three close to the perpendicular plane.
Viewing zeniths range from 24° to 55°. A high quality December
28, 2003 CHRIS data set providing a superior angular sampling
closer to the principal plane and a large overlap region with five
looks was also processed the same way; however in the winter
months mesquite shrubs are leafless and cannot be treated as
spheroids, a prerequisite for treatment with GO models.

Surface spectral reflectance estimates were calculated using
6S v4.2 (Vermote et al., 1997) for all Mode 3 bands and
assuming a desert aerosol type. Meteorological data indicated a
visibility of 16.1 km for August and December overpasses, from
which an optical thickness at 550 nm of 0.3 was estimated.
Forward-scattering reflectance values are considerably lower
than near-nadir values for all wavelengths as a result of the
increased visibility of shadows cast by vegetation and soil
roughness elements (Fig. 3). Similarly, back-scattering reflec-
tance values are higher than those close to nadir since there is a
greater degree of shadow-hiding.

2.3. Simple geometric model

The non-linear simple geometric model (SGM; Chopping et
al., 2003, 2004a, 2005) was adopted for this study. The SGM
was developed by relaxing some important assumptions made
by kernel-driven BRDF models and is intended for the purposes
of inversion against multi-angle data. As with kernel-driven
models, the SGM assumes potential contributions from both
geometric-optical and volume scattering effects and is for-
mulated as (Eq. (1)):

R ¼ GWalthallð#i; #v;uÞdkGð#i; #v;uÞ
þ CRossð#i; #v;uÞdkCð#i; #v;uÞ ð1Þ

where the subscripts i and v, refer to illumination and viewing
angles; ϑi, ϑv and φ are the solar zenith, view zenith and
relative azimuth angles, respectively; kG and kC are the



Table 1
Percent cover and calculated fractions of viewed and sunlit background and
crown (kG and kC, respectively) and shaded components (KZ+T) at nadir
viewing for seven sites

Plot # Shrub Cover (%) kG kC KZ+ t

Measured a Modeled

1 5.9 6.1 0.93 0.03 0.04
2 5.5 4.8 0.94 0.02 0.04
3 10.9 11.6 0.81 0.06 0.14
4 5.1 8.6 0.88 0.04 0.08
5 12.2 8.3 0.87 0.04 0.09
6 13.0 12.8 0.77 0.06 0.16
7 15.1 11.9 0.80 0.06 0.14

a Measured by counting 1 m pixels in the May 23, 2001 IKONOS
panchromatic image.
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calculated proportions of sunlit and viewed background and
crown, respectively (Table 1); GWalthall is the calibrated Walthall
model (Walthall et al., 1985); and CRoss is the simplified Ross
Fig. 4. IKONOS 1 m panchromatic image chips showing contrasting upper canopy an
Gray areas are mixtures of soil, black grama grass, broom snakeweed and a small
observations mapped at 25 m2.
turbid medium approximation for optically-thin or thick plane
parallel canopies (Ross, 1981). kG and kC are calculated exactly
via Boolean geometry for the principal (PP) and perpendicular
(CPP) planes and approximated away from these (Wanner et al.,
1995). The parameters are shrub density, crown radius, shape
and center height, and leaf area index. This model is not a
physical model as the radiative properties of the surface are not
handled explicitly; for example, the effects of diffuse irradiance
are ignored and all shadows are considered completely dark, as
in Li–Ross kernel driven BRDF models. However the SGM has
provided good results when tested against a radiosity-based
model calibrated with detailed ground measurements and
against multi-angle observations from the air (Chopping et al.,
2003, 2004a), and provides some advantages over the kernel
driven models. The most important difference between kernel-
driven models and the SGM is that the assumption that the
signatures of illuminated crown and background are identical is
relaxed in the latter.
d background configurations. The dark blobs are mostly honey mesquite shrubs.
proportion of other low plants. Boxes show the areas corresponding to CHRIS



Fig. 5. Initial attempts at scaling the Walthall model with CHRIS near-nadir
brightness (SZA=26°, VZA=24°, RAA=33°) for the seven test plots (solid
lines; #1–7 are for the plots shown as (a) through (g) in Fig. 4). The dotted line is
for a ground-measured sand BRDF at the transition site (Betty Walter-Shea/
Grassland PROVE Experiment).

Fig. 6. Walthall model reflectance values for 100% illuminated and viewed
background (solid line); ditto, weighted for the GO-calculated proportion of
illuminated and viewed background (dotted line), CHRIS reflectance values
(squares), and modeled with SGM (crosses). n=number of shrubs; r=mean
shrub radius.
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2.4. Obtaining the spatially dynamic background contribution

As noted above, the major challenge for the practical
application of GO models is to separate the upper canopy and
background contributions. In previous SGM inversions using
multi-angle images from the air the Walthall background sub-
model was adjusted against ground-based angular radiometry
close to the limited (300–600 m2) areas mapped to obtain static
background BRDFs for grassland and sand. The SGM was
originally conceived with the division of the surface into soil,
understory and upper canopy elements; however this approach
is not practical over large areas in an environment where the soil
and understory fractions vary importantly and the canopy is
highly discontinuous. Even in this desert large areas of
absolutely bare soil are only apparent in isolated locations
(e.g., roads and areas with high deposition of wind-borne soil),
so it is difficult to obtain a pure soil BRDF, even if this were
desirable. Treating the surface as divided discretely into soil
background and vegetation components is sub-optimal because
fractional shrub cover or other parameters retrieved will contain
information on both upper canopy and understory vegetation.

It is more appropriate to instead attempt to model the surface
as a background composed of a combined soil–understory
complex on which there are a varying number of larger plants.
This is still conceptually different from the real world situation
because the upper canopy can only be modeled as a varying
number of plants of a single size and shape; there is no
mechanism for modeling size and shape distributions to account
for large plants of different species and stages of maturity.
However, the approach is acceptable as a first approximation
and is more valid than adopting a static soil–understory BRDF.
The background BRDF must thus be characterized for each
location and for the angular configurations of interest, using
CHRIS data.
In a first attempt at inverting the SGM with CHRIS data the
Walthall soil–understory sub-model was driven by CHRIS
multi-angle observations. Contiguous areas of 25 m2 were
selected and the sub-model parameters were scaled according to
brightness in the CHRIS near-nadir image (Chopping et al.,
2004b). This is based on the assumption that brightness in
remotely sensed scenes with a ground sampling distance greater
than a few meters is controlled mainly by the understory rather
than by large plants, with the exception of swales. It can be
viewed as a means of injecting a priori information into the
inversion problem. Examination of aerial photography and very
high resolution panchromatic imagery indicates that this
assumption might be reasonable (Fig. 4). The separation is
challenging because we not only want to estimate shrub cover,



Fig. 7. Modeled woody shrub cover vs. cover estimated from IKONOS
panchromatic imagery for the calibration data set. These results were obtained
by using the optimal Walthall model coefficients and adjusting shrub number
density and mean radius against CHRIS data sets, starting with the shrub density
and mean radius set to arbitrary values of 0.01, and mean mid-crown height and
crown shape set to 2.0 and 0.2, respectively.

Fig. 8. CHRIS/Proba estimated surface bidirectional reflectance (red wave-
lengths) vs. surface bidirectional reflectance modeled using SGM driven with
IKONOS-derived shrub statistics and Walthall model backgrounds estimated
from Li-Ross model kernel weights. R2=0.74, RMSE=0.021, y=0.8154x+
0.0478, N=155,736. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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number density and size over bright soil backgrounds but also
over mixed grass and sub-shrub understories of varying
brightness. This was a first attempt to separate the soil–
understory background and the upper canopy contribution;
however, as noted above it is inappropriate to use a winter scene
for GO modeling and the scaling coefficients used were not
accurate. The results were poor – the cover maps retrieved were
highly inaccurate – mainly because the SGM inversions are
extremely sensitive to the estimates of the background
contribution and the need for further refinement of the technique
was apparent. To refine the calibration of the background sub-
model, coefficients were obtained by selecting two areas with
contrasting upper canopy and background configurations;
setting SGM shrub number density and radius parameters
according to the observed configurations corresponding to the
mapped CHRIS observations (e.g., inside the boxes in Fig. 4);
and adjusting the Walthall model parameters so that the SGM
matches observations using an optimization algorithm. Shrub
number density and mean radius per 25 m2 were obtained by
setting statistical thresholds on 25 m2 subsets of a 1 m May
2003 IKONOS panchromatic image using an algorithm
developed with medical imaging software (the NIH Image
package distributed by the US National Institutes of Health). A
linear scaling with near-nadir CHRIS brightness was assumed
and slopes and intercepts were calculated for use over the
landscape. Note that scaling the parameters in this way
represents an attempt to adjust for both the magnitude
(brightness) and shape (anisotropy) of the background (Fig.
5). We thus attempted to account for the background by making
the assumption that the background accounts for the bulk
brightness, rather than the larger plants. Since we cannot easily
model the background mixture we made use of this assumption
and estimated a Walthall BRDF model with coefficients scaled
according to near-nadir brightness: the remaining contribution
required to match the modeled reflectance to multi-angle
observations should be from the effects of large shrubs
(reducing brightness). However, the underlying assumption
may not be valid. The third attempt to calibrate coefficients
allowing estimates of the background contribution was effected
using the same optimization technique but for a larger number
of locations and a wider range of canopy-background config-
urations. Again, measured shrub number density and mean
radius parameters were used to obtain optimal Walthall model
parameters; however this time the red wavelength weights of a
kernel driven Li–Ross model (isotropic-LiSparse-RossThin
kernels) were used to predict the Walthall background model
coefficients. This method was used for all subsequent work; the
kernel weights provide superior information to the regression
since three parameters are available. Even though these are not
necessarily uncorrelated they do encapsulate information on the
3-D structure of the canopy–soil complex (Gao et al., 2003).

The effectiveness of these methods in allowing separation
between background and shrub contributions was evaluated by
examining the behavior of the SGM for a number of selected
25 m2 locations of dramatically different canopy and background
configurations (Fig. 6). It can be seen that the match between
modeled and observed values is not always precise; however the
number and density follow the expected trend with the exception
of the dark, dense backgroundwith a largemesquite upper canopy
((a) in Figs. 4 and 6). When the “optimal” estimates of the
background contribution are used (with calibration of theWalthall
model based on Li–Ross model kernel weights), the modeled
shrub cover is very close to that observed, indicating that error in



69M. Chopping et al. / Remote Sensing of Environment 104 (2006) 62–73
retrieving shrub cover is almost entirely owing to inaccuracies in
estimating the background contribution (Fig. 7).

2.5. Simulation of CHRIS imagery

The SGM was driven using spatially dynamic background
contributions from the calibrated Walthall model and IKONOS-
derived shrub statistics (mean radius, number density), with the h/
b and b/r parameters set at fixed values of 2.00 (low; typical) and
0.2 (very oblate crowns). Some differencesmight be expected as a
result of the different acquisition times of the reference and
CHRIS data: the IKONOS 1 m panchromatic image from which
Fig. 9. Angular composites (a) CHRIS band 421, (b) band 421 simulation, (c) CHRIS
0.0 to 0.05). Note: scaling is 2-standard deviations on a per-band basis and is not co
composites (a) and (c) also provide an indication of the information content of mult
shrub statistics were extracted was acquired inMay 2003whereas
the CHRIS scene was acquired in August of the same year.

2.6. SGM model inversions

For each mapped 25 m2 location the SGM was adjusted
against the CHRIS data (38,934 locations) by means of
numerical optimization methods (forward differencing was
used for estimates of partial derivatives of the objective function
and a Newton search method was used at each iteration to
decide which direction to pursue in the parameter space). The
objective function was min(absolute RMSE) with no weighting
band 431 composite, (d) band 431 simulation, (e) distribution of RMSE (range:
nsistent across images. Bands are ordered sequentially as in Fig. 2. The CHRIS
i-angle imagery.



Fig. 10. Woody shrub cover obtained by inverting SGMwith numerical methods
on the entire CHRIS multi-angle red band subset (38,934 pixels) plotted against
cover estimated from IKONOS panchromatic imagery. N=38,934, R2=0.25,
adjusted R2=0.75, linear fit: y=0.447x+0.0571, RMSE=0.06. Mean RMSE on
model fitting=0.002.

Fig. 11. Frequency distributions of absolute deviation between retrieved (SGM
with calibrated Walthall soil–understory response) and measured woody shrub
cover.
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of the error terms. No constraints were imposed on retrieved
values. Only mean shrub radius was left as a free parameter with
other parameters set to typical values (b/r=0.2, h/b=2.0, crown
leaf area index=2.08). Retrievals were thus effectively for
woody shrub fractional cover, a function of shrub number
density and mean radius. The plant shape parameter b/r was
fixed at 0.2 (very oblate) and the crown center height parameter
h/b was fixed at 2.00 m (low). This latter choice reflects the fact
that honey mesquite crowns are not significantly raised from the
surface on trunks, unlike trees. The leaf area index parameter is
here applicable only to the upper canopy and was thus set to a
typical mesquite leaf area index of 2.08 after White et al. (2000).
Inversions were restricted to using only the 631 nm band images
because in these wavelengths absorption by plant photosyn-
thetic materials and pigments is maximum (and so contrast
between soil and shrub crowns is maximum) and the single
scattering approximation is more valid than in the near-infrared.
This approach is supported by (Pinty et al., 2002) which asserts
that the wavelength should be chosen to maximize the
reflectance/absorption contrasts between vertically clumped
elements and the background. Furthermore, Qin and Gerstl
(2000) point out that the linear mixture assumption underlying
geometric-optical models is more valid for the red than near
infra-red wavelengths in arid environments; and BRDF model
inversion experiments using numerical methods show that there
are generally fewer problems such as trapping at local minima
in the red compared to the NIR (Gemmell, 2000).

3. Results and discussion

The simulated CHRIS multi-angle reflectance values show a
reasonable relation to the original CHRIS values in absolute
terms, with some scatter owing to uncertainties in both the
estimated background response and the upper canopy statistics
(Fig. 8). In the spatial domain, modeled angular color
composites demonstrate broadly similar distributions to those
of the observed CHRIS images but with much greater noise, as
expected (Fig. 9). The spatial distribution of error is not random
but exhibits a marked increase – albeit to a maximum of ∼0.07
with histogram tails close to zero at ∼0.002 – over brighter
areas with greater proportions of exposed soil; e.g., the area
surrounding the West Well in the southern part of the SW
quadrant, which is a location where livestock are watered.
However, there are also locations where modeling error is
greater over darker regions, as in the NE quadrant.

The inversion of the SGM against the multi-angle CHRIS
data for fractional shrub cover resulted in a reasonable match
with values estimated from IKONOS imagery, with a large
spread that mainly reflects error in estimating the background
contribution (Fig. 10). The mean absolute RMSE was 0.06
(n=38,934). A small proportion (2672/38,934=6.9%) of
minimizations could not be completed satisfactorily: a solution
was not found after the maximum number of iterations. The
match between the multi-angle patterns and the model was for
the vast majority of cases extremely good, with r2 values of
0.95 and above (but recall that n=4, so the statistic may be
misleading). The cumulative distribution of absolute error
shows that about 80% of estimates are associated with a
deviation from the IKONOS-estimated value of less than 0.08
(Fig. 11). The mapped values of retrieved fractional woody
shrub cover show a notable similarity to the distribution of the
IKONOS-estimated values (Fig. 12(a)–(b)). The distribution of
absolute RMSE indicates areas where the retrieve cover values
diverged from the measured values but show little correlation
with the spatial arrangement; that is, while the retrieved cover
values may differ importantly from the reference value, this is
usually not important enough to disrupt the spatial composition
of the map. There are some glaring inaccuracies in the retrieved



Fig. 12. (a) Fractional woody shrub cover estimated using IKONOS 1 m panchromatic imagery, (b) map of fractional woody shrub cover retrieved by adjusting the
SGM against CHRIS 631 nm multi-angle data, (c) distribution of absolute root mean square error.

1 Trade names included for the benefit of the reader and do not imply an
endorsement of or a preference for the product listed by any of the institutions
with which the authors are affiliated.
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map, for example in a large area in the center where retrieved
cover values were much lower than the reference values. These
erroneous retrievals can usually be excluded on the basis that
the values are close to zero: the map of zero or near-zero values
(not shown) corresponds closely to the RMSE map. In addition,
for much of this area the RMSE is high, providing an indication
that there were problems fitting the model to the data. On the
other hand, shrub cover was only slightly over-estimated in
the grass-dominated area in the extreme southwestern part of
the map, with no obvious change in error at the boundary
with the shrub-dominated area to the north. The reference shrub
cover map obtained by setting adaptive thresholds on subsets of
the IKONOS panchromatic image is also subject to some level
of uncertainty, although it is thought that this is not important at
broad scales. A random sample of these estimates was
compared to those obtained using QuickBird imagery and
eCognition1 segmentation software and a good but not excellent
relation was found (r2 =0.6; Fig. 13). Thus it is likely that at



Fig. 13. The relationship between fractional woody shrub cover obtained using
1 m IKONOS panchromatic imagery and a thresholding algorithm and 0.6 m
QuickBird panchromatic imagery using the eCognition segmentation algorithm
(randomly selected test points).
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least some of the discrepancies between retrieved and reference
data sets are owing to error in the latter.

4. Conclusions

This study has reported on work aimed at determining the
fractional cover of woody shrubs in desert grasslands in
southern New Mexico at the landscape scale by exploiting the
angular signature from CHRIS/Proba with a GO modeling
approach, making some assumptions about the canopy and
using the kernel weights of a Li–Ross model to obtain the
background contribution (soil–understory brightness and ani-
sotropy). The results show that the observed directional signal
in the CHRIS geometries can be explained – with some error –
in terms of the soil–understory background response and
woody shrub cover. It also shows that maps of fractional woody
shrub cover can be obtained – again, with some error – using
these multi-angle data and modeling techniques. For this
application the particular model used – SGM – provides one
major advantage over the linear, semi-empirical, kernel-driven
(LiSK) BRDF models adopted with great success for the
MODIS BRDF/Albedo algorithm (Moody et al., 2005), or
structural scattering indices (Gao et al., 2003): it provides
surface parameters which are straightforward in their inter-
pretation and validation. GO modeling is shown to be useful
because it not only describes but also to some degree explains
the observed remote sensing signal, particularly where multi-
angle reflectance data sensitive to 3-D canopy structure are
employed. It provides quantitative estimates of canopy para-
meters in a framework where the 3-D nature of the surface is
handled explicitly, taking into account the shadowing effects
that have often hounded nadir-only remote sensing approaches
in arid environments.

CHRIS is a highly successful experimental sensor with a
limited geographic coverage; the Jornada Experimental Range
is 1 of the 22 core sites worldwide initially selected in 2000
prior to the launch of the Proba satellite. However the
techniques developed here might well be used operationally
over large areas with other kinds of remote sensing data which
provide observations at multiple viewing and/or illumination
angles: the NASA EOS Multi-angle Imaging SpectroRadi-
ometer (MISR) is currently the best candidate since it provides
radiance data at nine viewing angles with a 275 m ground
sampling in the red channel. First attempts at applying these
techniques with MISR data have been promising (Chopping et
al., 2005). It is hoped that in the future GO models will benefit
from increased coverage of the angular domain, especially if
observations can be provided close to the solar principal plane
where reflectance anisotropy is at a maximum, and/or for more
than a single solar zenith angle. In this study, only four looks at a
single moderate solar zenith angle and far from the principal
plane were available to the SGM. The initial plans for CHRIS
on Proba included use of the platform's agility to provide cross-
track sampling (Cutter, 2002) but it remains to be seen whether
this can be realized in practice. Without cross-track viewing the
only way to extend the range of sun angles would be to combine
data sets acquired at different times of the year but this is not
feasible as surface conditions will be very different. Future work
will pursue the retrieval of other important canopy structural
parameters such as canopy height and shrub shape and
determine whether it is possible to separate fractional cover
into mean shrub radius and number density.
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